Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells

Author:

Hu Qingxi12,Su Caiping1ORCID,Zeng Zhaoxiang3,Zhang Haiguang12ORCID,Feng Rui3,Feng Jiaxuan3,Li Shuai1

Affiliation:

1. Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

2. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China

3. National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China

Abstract

Aligned electrospun fibers used for the fabrication of tubular scaffolds possess the ability to regulate cellular alignment and relevant functional expression, with applications in tissue engineering. Despite significant progress in the fabrication of small-diameter vascular grafts (SDVGs) over the past decade, several challenges remain; one of the most problematic of these is the fabrication of aligned nanofibers for multilayer SDVGs. Furthermore, delamination between each layer is difficult to avoid during the fabrication of multilayer structures. This study introduces a new fabrication method for minute delamination four-layer tubular scaffolds (FLTSs) that consist of an interior layer with highly longitudinal aligned nanofibers, two middle layers composed of electrospun sloped and circumferentially aligned fibers, and an exterior layer comprising random fibers. These FLTSs are used to simulate the structures and functions of native blood vessels. Here, thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/polyethylene glycol (PEG) were electrospun to fabricate FLTSs or tubular scaffolds with completely random fibers layer (RLTSs). The surface wettability of the TPU/PCL/PEG tubular scaffold was tested by water contact angle analysis. In particular, compared with RLTSs, FLTSs showed excellent mechanical properties, with higher circumferential and longitudinal tensile properties. Furthermore, the high viability of the human umbilical vein endothelial cells (HUVECs) on the FLTSs indicated the biocompatibility of the tubular scaffolds comparing to RLTSs. The aligned and random composite structure of the FLTSs are conducive to promoting the growth of HUVECs, and the cell adhesion and proliferation on these scaffolds was found to be superior to that on RLTSs. These results demonstrate that the fabricated FLTSs have the potential for application in vascular tissue regeneration and clinical arterial replacements.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3