Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties

Author:

Oh So-Yeon1,Kang Min-Sil1,Knowles Jonathan C12,Gong Myoung-Seon1

Affiliation:

1. Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University Graduate School, Chungnam, South Korea

2. Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK

Abstract

A new family of highly elastic polyurethanes (PUs) partially based on renewable isosorbide were prepared by reacting hexamethylene diisocyanate with a various ratios of isosorbide and polycarbonate diol 2000 (PCD) via a one-step bulk condensation polymerization without catalyst. The influence of the isorsorbide/PCD ratio on the properties of the PU was evaluated. The successful synthesis of the PUs was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. The resulting PUs showed high number-average molecular weights ranging from 56,320 to 126,000 g mol−1 and tunable Tg values from −34 to −38℃. The thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The PU films were flexible with breaking strains from 955% to 1795% at from 13.5 to 54.2 MPa tensile stress. All the PUs had 0.9–2.8% weight lost over 4 weeks and continual slow weight loss of 1.1–3.6% was observed within 8 weeks. Although the cells showed a slight lower rate of proliferation than that of the tissue culture polystyrene as a control, the PU films were considered to be cytocompatible and nontoxic. These thermoplastic PUs were soft, flexible and biocompatible polymers, which open up a range of opportunities for soft tissue augmentation and regeneration.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3