Freeze-dried and spray-dried zinc-containing silica microparticles entrapping insulin

Author:

Vanea Emilia1,Moraru Corina1,Vulpoi Adriana1,Cavalu Simona2,Simon Viorica1

Affiliation:

1. Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania

2. Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania

Abstract

New approaches for oral administration of insulin are strongly related to novel insulin carriers. The aim of this study was the insulin microencapsulation in a new zinc-silica matrix for drug protection and controlled release. Zinc-silica microparticles loaded with insulin were obtained by sol-gel process via spray drying and freeze drying methods. Inorganic silica matrix isolates and constrains the movement of the biomolecules preventing their aggregation and denaturation, while the zinc oxide improves the system stability. Moreover, formation of insulin hexamers in the presence of zinc ions leads to an increased stability of the insulin three-dimensional structure during preparation, storage and release. The particles were characterized with respect to average size, specific surface area, porosity and morphology. In vitro behavior of insulin-loaded particles together with protein structural conformation was also evaluated. The release profile can be adapted by synthesis route of microparticles.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3