In vitro study of antibacterial and osteogenic activity of titanium metal releasing strontium and silver ions

Author:

Okuzu Yaichiro1ORCID,Fujibayashi Shunsuke1,Yamaguchi Seiji2,Masamoto Kazutaka1,Otsuki Bungo1,Goto Koji1,Kawai Toshiyuki1,Shimizu Takayoshi1,Morizane Kazuaki1,Kawata Tomotoshi1,Shimizu Yu1,Hayashi Makoto1,Matsuda Shuichi1

Affiliation:

1. Graduate School of Medicine, Department of Orthopaedic Surgery, Kyoto University, Japan

2. Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan

Abstract

Peri-prosthetic infection and loosening of implants are major problems in orthopaedic and dental surgery. To address these issues, surface treatment methods for titanium implants have been improved by modifying the alkali and heat treatment. We have previously fabricated calcium-treated Ti metal that releases Sr ions (CaSr-Ti), which resulted in a higher in vitro osteogenic response and early in vivo bone bonding. Further, we developed a Ti metal that released both Sr and Ag ions (CaSrAg-Ti). In this study, we evaluated the antibacterial ability and osteogenic cellular response of CaSrAg-Ti and CaSr-Ti in vitro using rat bone marrow stromal cells (BMSCs) cultured on implant samples and extract mediums (EMs) made by immersing the implant samples in the medium. CaSrAg-Ti did not show cytotoxicity and was associated with a slightly higher osteogenic response when compared to CaSr-Ti, without inhibiting the effect of Sr. The osteogenic response was also observed in the cells cultured with the CaSrAg-Ti EM; however, the response was not as high as that of the cells on the CaSrAg-Ti implant sample. Significantly higher antibacterial activity was observed along with an antibacterial efficacy of more than 95% against methicillin-susceptible Staphylococcus aureus and Escherichia coli. The main advantages of our surface treatment are its simplicity and low cost. Therefore, our treatment is promising for clinical applications in orthopaedic or dental Ti-based implants with antibacterial and early bone-bonding abilities.

Funder

the Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3