Characterizations of Chondrocyte Attachment and Proliferation on Electrospun Biodegradable Scaffolds of PLLA and PBSA for Use in Cartilage Tissue Engineering

Author:

Wei Jyh-Ding1,Tseng How2,Chen Eric Tsu-Hsin1,Hung Ching-Hsiang3,Liang Yu-Chih3,Sheu Ming-Thau4,Chen Chien-Ho3

Affiliation:

1. Department of Orthopedics, ShinKung Memorial Hospital, Taipei Taiwan, ROC

2. Department of Biochemistry, School of Medicine, Taipei Medical University Taipei, Taiwan, ROC

3. School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, ROC

4. School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei Taiwan, ROC

Abstract

The influence of physical characteristics of electrospun three-dimensional (3D) fibrous scaffolds based on polybutylene succinate- co-adipate (PBSA) and poly l-lactic acid (PLLA) on the culture of primary human chondrocytes (PHCs) in terms of cell attachment, proliferation, and re-differentiation was investigated. Physical characteristics assessed for two polymers electrospun at two different delivery rates (PBSA-3, PBSA-16, PLLA-3, and PLLA-16) including average fiber diameter, average pore diameter, porosity, and contact angle. Results demonstrated that 3D fibrous scaffolds are better for PHCs’ attachment than two-dimensional (2D) casting films made of the same polymeric materials. It was also found that 3D fibrous scaffolds are appropriate architecture for the proliferation of PHCs than 2D casting films and dependent upon the polymer used. Histological analysis revealed that a significant amount of PHC was found to be growing only within layers of PLLA fibrous scaffolds. The mitochondrial ribonucleic acid (mRNA) expression of both aggrecan and type II collagen by PHCs cultured in tissue culture polystyrene for 28 days decreased significantly. The mRNA expression of both aggrecan and type II collagen by PHCs cultured in PBSA scaffolds increased from 14 to 28 days, whereas only mRNA expression of aggrecan cultured in both PLLA scaffolds increased from 14 to 28 days.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3