Fabrication, characterization and efficacy evaluation of natural gum-based bioactive haemostatic gauzes with antibacterial properties

Author:

Kushwah Himanshu1,Sandal Nidhi1,Chauhan Meenakshi2,Mittal Gaurav1ORCID

Affiliation:

1. Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi, India

2. Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India

Abstract

Management of uncontrolled bleeding due to traumatic injuries occurring in battlefields and road traffic accidents is a major healthcare concern, especially in developing countries like India. Since natural coagulation mechanism alone is insufficient to achieve haemostasis quickly in such cases, application of an external haemostatic product is generally required to accelerate the coagulation process. We had recently reported preliminary comparison of four natural absorbent gums, which indicated towards haemostatic potential of gum tragacanth (GT) and xanthan gum (XG). Present study involves fabrication of haemostatic dressings incorporated with different concentrations of GT or XG, along with ciprofloxacin (a broad-spectrum antibiotic) and other excipients over woven cotton gauze. Prepared gauzes were investigated for physico-chemical characteristics, in-vitro blood interaction studies, antibacterial effect and in-vivo haemostatic efficacy in Sprague Dawley rats using two bleeding models. Acute dermal toxicity studies were also carried out as per OECD guidelines. SEM studies showed that gauzes coated with XG had thin, uniform layer of coating, while in case of GT; coating was comparatively rough with insoluble particles of GT adhering over gauze surface, forming voids on the fibers. Coated gauzes exhibited optimum mechanical properties in terms of tensile strength and percent extension at break. GT coated dressings showed good fluid uptake and retention ability in-vitro. Test gauzes were non-hemolytic in nature, did not elicit any dermal toxicity on animals’ skin and had the ability to protect against E. coli infection. In-vivo efficacy studies in rat femoral artery and liver laceration bleeding models indicated that gauzes coated with 4% GT were able to clot blood in least time (36.67 ± 3.33s and 40 ± 2.58s respectively) as compared to other gum combinations and commercially available dressing ‘Surgispon® (103.3 ± 4.22s and 85 ± 5.62s respectively). Results of this study validate our initial findings of the potential of gum tragacanth to be developed into a suitable haemostatic product.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3