Effectiveness of laddered embossed structure in a locking compression plate for biodegradable orthopaedic implants

Author:

Chandra Girish1ORCID,Pandey Ajay1

Affiliation:

1. Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Abstract

Locking compression plate (LCP) has conventionally been the most extensively employed plate in internal fixation bone implants used in orthopaedic applications. LCP is usually made up of non-biodegradable materials that have a higher mechanical capability. Biodegradable materials, by and large, have less mechanical strength at the point of implantation and lose strength even more after a few months of continuous degradation in the physiological environment. To attain the adequate mechanical capability of a biodegradable bone implant plate, LCP has been modified by adding laddered – type semicircular filleted embossed structure. This improved design may be named as laddered embossed locking compression plate (LELCP). It is likely to provide additional mechanical strength with the most eligible biodegradable material, namely, Mg-alloy, even after continuous degradation that results in diminished thickness. For mechanical validation and comparison of LELCP made up of Mg-alloy, four-point bending test (4PBT) and axial compressive test (ACT) have been performed on LELCP, LCP and continuously degraded LELCP (CD-LELCP) with the aid of finite element method (FEM) for the assembly of bone segments, plate and screw segments. LELCP, when subjected to the above mentioned two tests, has been observed to provide 26% and 10.4% lower equivalent stress, respectively, than LCP without degradation. It is also observed mechanically safe and capable of up to 2 and 6 months of continuous degradation (uniform reduction in thickness) for 4PBT and ACT, respectively. These results have also been found reasonably accurate through real-time surgical simulations by approaching the most optimal mesh. According to these improved mechanical performance parameters, LELCP may be used or considered as a viable biodegradable implant plate option in the future after real life or in vivo validation.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3