Preparation of berberine hydrochloride-Ag nanoparticle composite antibacterial dressing based on 3D printing technology

Author:

Chen Chen1,Xie Maomei1,Yan Yueling1,Li Yongyuan1,Li Zhiyao1,Zhang Tong1,Gao Zanyan1,Deng Liyi,Wang Haixia12ORCID

Affiliation:

1. College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China

2. State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China

Abstract

In recent years, Ag nanoparticle (Ag NP)-loaded antibacterial dressings have attracted much attention in high-level medical dressings. However, the high cytotoxicity of Ag NP has always been a problem. In this paper, we examined the improvement of antibacterial activity of berberine hydrochloride (BBR) with Ag NP, the results showed that the combined use of BBR and Ag NP can effectively reduce the dosage of Ag NP while ensuring the inhibition of bacterial growth, thus an intermediate layer dressing containing combined drugs were prepared. At the same time, the top dressing of polyvinyl alcohol (PVA) solid film and the PVA bottom dressings with three kinds of leakage structures were prepared by 3D printing technology. Three kinds of PVA bottom dressings showed high quality consistency, and the greater the number of leak holes, the higher the porosity value of the dressing, while the swelling ratio value of the bottom layer dressing with three holes was the lowest. Finally, three types of BBR-Ag NP composite antibacterial dressings (3D-BBR-Ag NP) can be obtained by self-assembling of the top dressing, the intermediate layer dressing, and the bottom dressings with three kinds of leakage structures. The cumulative drug release results showed that dressing with more holes had a faster drug release rate compared to the other two ones with fewer leakage holes. Besides, five drug release kinetic models were used to investigate the cumulative BBR release profiles for three types of 3D-BBR-Ag NP. And the three types of composite dressings showed strong antibacterial activity after 6 h of cultivation with staphylococcus aureus. The study showed that the antibacterial activity of the self-assembled dressing prepared by combination of BBR with Ag NP can be improved, and the drug release rate of the hydrogel dressing can be flexibly controlled through 3D printing technology.

Funder

Science and Technology Plan Project of Tianjin

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3