Nanoscale architecture and cellular adhesion of biomimetic collagen substrates

Author:

Jabaiah Abeer1,Wang Xi1,Raman Senthil Kumar1,Ragan Regina1,Da Silva Nancy A1,Wang Szu-Wen1

Affiliation:

1. Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA

Abstract

The ability to engineer bioactive sites within the biopolymer collagen has significant potential to dictate cellular microenvironments and processes. We have developed a novel recombinant DNA platform that enables such molecular-level control over this important material. In this investigation, we demonstrated the production of synthetic human collagen using yeast strains that were engineered with human prolyl hydroxylase α and β genes integrated into the genome and a codon-optimized collagen gene carried on a plasmid. To understand the extent to which this synthetic collagen can mimic native human collagen, we examined the relationships between the structural topology and physical stability with the ability to support adhesion of HT-1080 cells. Characterization of these biopolymers included evaluation using circular dichroism spectroscopy, atomic force microscopy, and MTT metabolic activity assays. Although the apparent melting temperatures of the recombinant collagens were ∼3–5℃ less than native sources, the recombinant and native collagens exhibited comparable triple helical structure, polymeric dimensions, adsorption on polystyrene, and cellular adhesion properties below their respective melting temperature values. These results support the feasibility of producing molecularly-engineered collagens that can mimic native substrates for therapeutic and tissue engineering applications.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3