Affiliation:
1. Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Abstract
The objective of this study was to evaluate local bone formation following systemic administration of parathyroid hormone (1–34), a surgically implanted synthetic β-tricalcium phosphate bone biomaterial serving as a matrix to support new bone formation. Twelve weeks after bilateral ovariectomy, all rats underwent bone defect in the distal femurs, and β-tricalcium phosphate was implanted into critical sized defects. After defect operation, all animals were randomly divided into four groups and received following subcutaneous injections until death at four and eight weeks: sham rats (group ST); sham rats + parathyroid hormone, 30 µg/kg, three times a week (group SPT); OVX rats (group OT); and OVX rats + parathyroid hormone (group OPT). The distal femurs of rats were harvested for evaluation. The treatment group demonstrating the highest levels of new bone formation was the defects treated with parathyroid hormone as assessed by micro-computed tomography, biomechanical strength, and histological analysis for sham rats. Furthermore, parathyroid hormone showed a stronger effect on accelerating the degradation of β-tricalcium phosphate. Osteoporosis can limit the function of parathyroid hormone and/or β-tricalcium phosphate. The results from our study demonstrate that combination of parathyroid hormone and β-tricalcium phosphate brings better effect to bone tissue repair in non-osteoporosis and/or osteoporosis status.
Subject
Biomedical Engineering,Biomaterials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献