Does elevating silver content in zinc-based glass polyalkenoate cements increase their antibacterial efficacy against two common bacteria using the agar gel diffusion method?

Author:

Coughlan A1,Breed SM1,Ashraf C1,Cardinale JA2,Hall MM1,Towler MR13

Affiliation:

1. Inamori School of Engineering, Alfred University, Alfred, NY, USA

2. College of Liberal Arts and Sciences, Alfred University, Alfred, NY, USA

3. Material Surface Science Institute, University of Limerick, Limerick, Ireland

Abstract

The authors have previously shown that it is possible to incorporate silver into a soda-zinc-silicate glass and subsequently form a glass polyalkenoate cement from it. The objective of the research described herein is to determine if incremental increases in the silver content of these glass polyalkenoate cements will increase their antibacterial efficacy against gram-positive and gram-negative bacteria using the accepted spread plate method. Four glass polyalkenoate cements were formulated; three contained increasing amounts of silver incorporated into them (cements A, B, and C, containing 0.33 mol%, 0.66 mol%, and 0.99 mol% silver, respectively) and a fourth contained no silver, which acted as a control (control cement). The handling properties of the glass polyalkenoate cements were evaluated, where working times were around 2 min and setting times ranged from 1 h 17 min to 2 h 41 min. Inductively coupled plasma atomic emission spectroscopy was employed to determine silver ion release with cement maturation for up to 14 days. The majority of silver ions were released within the first 24 h, with up to 2 mg/L cumulative ion release recorded up to 14 days. The antibacterial properties of the coatings were evaluated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria. The silver-glass polyalkenoate cements exhibited antibacterial effect against both bacterial strains. The maximum inhibition zones recorded against S. aureus was 14.8 mm (SD ± 1.11) and against P. aeruginosa was 20.6 mm (SD ± 0.81). Cement B had a greater antibacterial effect compared to cement A, however, cements B and C had comparable antibacterial effects after 14 days even though cement C contained 0.33 mol% more silver than B. This indicates that by increasing the silver content in these cements, the antibacterial efficacy increases to a point, but there is a threshold where further silver ion release does not increase the antibacterial effect.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3