Backscattered Electron Imaging: The Role in Calcified Tissue and Implant Analysis

Author:

Bloebaum Roy D.1,Bachus Kent N.1,Boyce Todd M.1

Affiliation:

1. Bone and Joint Research Laboratories Department of Veterans Affairs Medical Center (151F) Salt Lake City, UT 84148

Abstract

Backscattered electron (BSE) imaging is being developed into an accurate and useful technique for determining changes in bone morphology, histometry, and mineral content. BSE is currently used as a tool for quantifying the response of mineralized tissue to biomaterials. This paper briefly discusses the physics of BSE imaging and its application to mineralized tissue and biomaterials research. Original research is reported which better defines the errors that are imposed by changes in specimen working distance and tilt. Two parameters, the backscattered electron profile and the weighted mean graylevel, were introduced and developed so that BSE imaging could be used as a reproducible, quantitative technique for studying mineral content changes in bone. Results demonstrated that the working distance to a cortical bone surface can vary up to 300 μm or tolerate a tilt of up to 10 degrees without altering weighted mean graylevel values by more than 2 percent. Calibration of the BSE signal would allow for reproducible, quantitative mineral content analysis to be conducted on bone and bone/implant interfaces. Bone substitutes and pure metals were investigated to determine their potential as BSE graylevel calibration standards. Pure metals appear to be the most promising materials for standardizing BSE graylevels, due to their greater homogeneity. Finally, interrelationships between compressive strength and stiffness, histometry, and mineral content of individual trabecula in cancellous bone are investigated. Failure site trabecular thickness and minimum trabecular thickness, two new histometric parameters defined in this study, were found to statistically correlate with cancellous bone strength and stiffness.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Reference74 articles.

1. BloebaumR. D., CampbellP. A., ReidS. A., DorrL. D. Proc. Uncement. Total Jt. Replace. Symp. Harrington Arthritis Research Center, Phoenix, AZ, p. 49 (1986).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3