Synthesis and inhibition study on tripeptide inhibitor modified poly(l-lysine) dendrimers

Author:

Zhang Xiaowei1,Luo Kui2,Wang Gang2,Nie Yu2,He Bin2,Wu Yao2,Gu Zhongwei12

Affiliation:

1. Department of Chemistry, Sichuan University, Chengdu 610064, China

2. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China

Abstract

Peptide dendrimers are attractive nonviral gene vectors. But a biological barrier for their application in gene delivery is the fast degradation catalyzed by proteasomes. Proteasome inhibitors are efficient at prohibiting the degradation of peptide nonviral vectors, thus enhancing gene transfection efficiency. In this study, Nα-Boc-protected leucine vinyl ester proteasome inhibitor Boc-Leu-Leu-Leu-ve was synthesized by the liquid-phase method and was then immobilized onto poly(l-lysine) dendrimers. Suc-Leu-Leu-Val-Tyr-AMC was used as fluorimetric substrate and the inhibition capacity of Boc-Leu-Leu-Leu-ve immobilized onto G3 and G6 poly(l-lysine) dendrimers for the chymotrypsin-like activity of ACHN cell proteasome was tested. The results indicated that both Boc-Leu-Leu-Leu-ve peptide and the peptide immobilized on G3 dendrimer showed low inhibition capacity when the concentration was below 0.2 μM. When the inhibitor concentrations were increased to 5.0 μM, however, the percentage inhibition of Boc-Leu-Leu-Leu-ve peptide and the peptide immobilized on G3 dendrimer became about 50% and 25%, and that of peptide immobilized on the G6 dendrimer was 7.5% only. These results indicated that dendritic structure and linker length could be the main factors affecting proteasome inhibition capacity. The cytotoxicity of the dendritic inhibitors was found to be low. Thus, whilst the synthetic production of poly(l-lysine) dendrimers immobilized with peptide inhibitors was successful and these modified dendrimers could work to inhibit proteasome activity, further studies will need to be carried out to improve inhibition capacity.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3