Improvement of the Cell-loading Efficiency of Biomaterials by Inoculation with Stem Cell-based Microspheres, in Osteogenesis

Author:

Langenbach Fabian1,Naujoks Christian1,Laser Andrea1,Kelz Michael1,Kersten-Thiele Pia1,Berr Karin1,Depprich Rita1,Kübler Norbert1,Kögler Gesine2,Handschel Jörg1

Affiliation:

1. Department for Cranio- and Maxillofacial Surgery Heinrich-Heine-University Düsseldorf, Moorenstraase 5 40225 Düsseldorf, Germany

2. Institute for Transplantation Diagnostics and Cell Therapeutics Heinrich-Heine-University, Düsseldorf, Moorenstrasse 5 40225 Düsseldorf, Germany

Abstract

In critical-size bone defects, autologous or allogenic cells are required in addition to compatible biomaterials for the successful defect healing. State of the art inoculation methods of biomaterials are based on the application of cell suspensions to the biomaterial. However, only less amounts of cells can be applied and sufficient adhesion to the material is required. Therefore, it was investigated whether the advantages of stem cell-based microspheres and insoluble collagenous bone matrix (ICBM) scaffolds can be combined which can lead to an advancement in cell seeding on biomaterials. Microspheres were produced from unrestricted somatic stem cells from human umbilical cord blood and were mounted on ICBM scaffolds. Following the incubation with osteogenic or control medium, the constructs were analyzed histologically after 3, 7, 14, and 28 days. Alizarin Red S and von Kossa staining revealed microsphere mineralization after 3 days in osteogenic and after 14 days in control medium. Meanwhile, a time-dependent increase in tissue, growing out of the microspheres, was detected. Our results provide evidence that microsphere–ICBM constructs are promising candidates for approaches of bone regeneration. They allow the transfer of substantially high numbers of cells in partially mineralized constructs.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3