Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions

Author:

Li Yiming12,Stone Wendy3,Schemitsch Emil H2,Zalzal Paul4,Papini Marcello1,Waldman Stephen D35,Towler Mark R13

Affiliation:

1. Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada

2. Keenan Research Centre, St. Michael’s Hospital, Toronto, ON, Canada

3. Chemistry and Biology, Ryerson University, Toronto, ON, Canada

4. Oakville Memorial Hospital, Oakville, ON, Canada

5. Chemical Engineering, Ryerson University, Toronto, ON, Canada

Abstract

This work considered the effect of both increasing additions of Strontium (Sr2+) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B2O3–P2O5–CaCO3–Na2CO3–TiO2–SrCO3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na+, Ca2+ and Sr2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1–7 days) as a result of the dissolution products released.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3