PCL-nHAC/Mg-Ca alloy composite and preliminary study of its osteogenesis property

Author:

Liu Congying1ORCID,Wang Chengyue1,Yang Jingxin2

Affiliation:

1. Department of Prosthodontics, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China

2. Beijing Union University, Beijing, China

Abstract

Owing to their excellent properties, magnesium alloys are widely used in bone tissue engineering. However, considerable work has been conducted to control the degradation rate and improve the cytocompatibility of magnesium alloys. In this study, low-cost production introduced a new bone repair composite (PCL-nHAC/Mg-Ca), which was composed of nano-hydroxylapatite-collagen (nHAC), polycaprolactone (PCL) and Mg-Ca alloy substrate treated by micro- arc oxidation (MAO). The experimental results showed that compared with the Mg-Ca alloy treated by MAO alone, the PCL-nHAC/Mg-Ca composite has a porous structure and a slower degradation rate. Cell experiments showed that the PCL-nHAC/Mg-Ca composite had good biocompatibility and significantly enhanced the proliferation of the MC3T3-E1 cells. The rabbit skull defect model further proved that the PCL-nHAC/Mg-Ca composite could regulate the degradation rate of the Mg-Ca alloy and promote the formation of bone tissue. Histological analyses showed that the PCL-nHAC/Mg-Ca composite had good stability in vivo and could better accelerate bone formation.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3