Bone regeneration potential of the new chitosan-based alloplastic biomaterial

Author:

Bojar Witold1,Kucharska Martyna2,Ciach Tomasz2,Koperski Łukasz3,Jastrzębski Zenon4,Szałwiński Michał5

Affiliation:

1. Medical Devices Department, National Medicines Institute, Poland

2. Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Poland

3. Department of Pathology, Medical University of Warsaw, Poland

4. Pharmacology Department, National Medicines Institute, Poland

5. Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Poland

Abstract

Over the last few years, alloplastic bone substitute materials are raising much interest as an alternative to autologic transplants and xenogenic materials especially in oral surgery. These non-immunogenic and completely resorbable biomaterials are becoming the basis for complete and predictable guided bone regeneration in many cases. The objective of our research was to evaluate the dynamics of bone formation in rats’ skulls after implantation of the new chitosan/tricalcium phosphate/alginate biomaterial in comparison to the commercially available alloplastic bone graft. A total of 45 adult male rats weighing 300–400 g were used for the study. The 85-mm-diameter defects in calvaria bone were prepared with a trephine bur, and then filled with the bone substitute materials: chitosan/tricalcium phosphate/alginate or easy-graft Classic (Degradable Solutions AG) (EA) or left just with the blood clot. Animals were sacrificed at 1 and 3 months for histological, histomorphometrical and micro-tomographic evaluations. Histological evaluation at 1 month showed early new bone formation, observed around the experimental biomaterial (CH/TCP/Alg). There were no features of purulent inflammation and necrosis or granulomatous inflammation. Microscopic examination after 3 months following the surgery revealed trabecular bone formation around chitosan-based bone graft with no significant inflammatory response. Less satisfactory and differing results were observed for the commercially available EA and control blood clot. The tested material (chitosan) showed a high degree of biocompatibility and osteoconductivity in comparison with the control groups. Additionally, it seemed to be a “user-friendly” material for oral surgeons.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3