Synthesis of Cholesterol Esterase by Monocyte-Derived Macrophages: A Potential Role in the Biodegradation of Poly(Urethane)s

Author:

Labow Rosalind S.1,Meek Erin1,Santerre J. Paul2

Affiliation:

1. University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON Canada K1Y 4W7

2. Faculty of Dentistry, University of Toronto, Toronto, ON, Canada

Abstract

Many studies have described the role of monocyte-derived macrophages (MDM) in inflammation leading to atherosclerosis, a process in which alterations in the metabolism of cholesterol esters is well established. On the other hand, the mechanism of MDM activation in response to biomaterial surfaces is still not well understood. Several studies have described the different degrees of activation of monocytes on poly(urethane) surfaces by measuring the release of early markers of differentiation, such as cytokines. It has been possible to decrease MDM activation in contact with materials by modifying the material surface with antioxidants. Therefore, it has been proposed that it is the reactive oxygen species provided by MDM which are responsible for deleterious effects observed in material-derived inflammation. A recent study has shown that one of the markers of the degree of differentiation of MDM is the synthesis of cholesterol esterase (CE), an enzyme demonstrated as causing biodegradation of polyester(urethane)s and more recently polyether- and polycarbonate-poly(urethane)s as well. In this review article, markers used to assess MDM differentiation on material surfaces will be described and related to the activation of MDM. In particular, the CE accumulation in MDM which is associated with atherosclerosis will be related to its degradative potential during chronic inflammation. How this may impact on the biostability of implanted poly(urethane) medical devices is discussed.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3