Sustained drug release using cobalt oxide nanowires for the preparation of polymer-free drug-eluting stents

Author:

Bedair Tarek M123ORCID,Min Il Jae3,Park Wooram1,Joung Yoon Ki34,Han Dong Keun1ORCID

Affiliation:

1. Department of Biomedical Science, CHA University, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, Republic of Korea

2. Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt

3. Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea

4. Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea

Abstract

Polymer-based drug-eluting stents (DESs) represented attractive application for the treatment of cardiovascular diseases; however, polymer coating has caused serious adverse responses to tissues such as chronic inflammation due to acidic by-products. Therefore, polymer-free DESs have recently emerged as promising candidates for the treatment; however, burst release of drug(s) from the surface limited its applications. In this study, we focused on delivery of therapeutic drug from polymer-free (or -less) DESs through surface modification using cobalt oxide nanowires (Co3O4 NWs) to improve and control the drug release. The results demonstrated that Co3O4 NWs could be simply fabricated on cobalt–chromium substrate by ammonia-evaporation-induced method. The Co3O4 NWs were uniformly arrayed with diameters of 50–100 nm and lengths of 10 µm. It was found that Co3O4 NWs were comparatively stable without any delamination or change of the morphology under in vitro long-term stability using circulating system. Sirolimus was used as a model drug for studying in vitro release behavior under physiological conditions. The sirolimus release behavior from flat cobalt–chromium showed an initial burst (over 90%) after one day. On the other hand, Co3O4 NWs presented a sustained sirolimus release rate for up to seven days. Similarly, the polymer-less specimens on Co3O4 NWs substrates sustained sirolimus release for a longer-period of time when compared to flat Co–Cr substrates. In summary, the current approach of using Co3O4 NWs-based substrates might have a great potential to sustain drug release for drug-eluting implants and medical devices including stents.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3