An asymmetric wettable PCL/chitosan composite scaffold loaded with IGF-2 for wound dressing

Author:

Yang Shuang1,Lan Linhao1,Gong Mingda2,Yang Ke1,Li Xiaoming2ORCID

Affiliation:

1. Institute of Biomedical Engineering, Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, China

2. Department of Military Traffic Injury Prevention, Daping Hospital, Army Medical University, Chongqing, China

Abstract

An effective dressing is essential for wound healing. In fact, the wettability performance is one of the most important factors of a wound dressing. The fundamental functions of a wound dressing involve the absorption of excess exudates and maintenance of optimal moisture at the wound by controlling water evaporation. Here, we designed a type of chitosan (CS) sponge and PCL nanofibrous membrane composite dressing with asymmetric wettability surfaces as wound healing materials for biomedical applications. The hydrophobic surfaces of the composite dressing were waterproof and could efficiently control the water vapor transmission rate, whereas the hydrophilic surface of the CS sponge had good cytocompatibility and water-absorbing capability. Insulin-like growth factor-2 (IGF-2) was added to the CS sponge, and exhibited a stimulatory effect on fibroblasts migration and proliferation. Therefore, the fabricated CS sponge and PCL membrane composite dressing had excellent cytocompatibility, vapor transmission rate, and liquid absorption and asymmetric wettability, suggesting its potential as a promising alternative to traditional wound dressing.

Funder

National Natural Science Foundation of China

Research Foundation of Chongqing University of Science and Technology

Innovation-entrepreneurship Seed Foundation of Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3