Affiliation:
1. Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, China
Abstract
Objectives To prepare a biomineralized nano silk fibroin film seeded with bone marrow stromal cells (BMSCs), and to evaluate its performance in spinal fusion. Methods The silk fibroin film was mineralized in a modified, simulated body fluid, seeded with BMSCs, and evaluated in a rat model of posterolateral lumbar fusion, compared with pure silk fibroin, silk fibroin/bone marrow stromal cells, mineralized silk fibroin, mineralized silk fibroin/bone marrow stromal cells, iliac crest bone, and no graft. After 12 weeks, all rats were sacrificed and underwent manual palpation, micro-CT scanning, biomechanical testing, and histology. Results The infrared spectrum, X-ray diffraction, and scanning electron microscopy demonstrated deposition of mineral layers on the silk fibroin film surface. The fusion rate, bone volume, relative strength and stiffness, and histological score of the mineralized silk fibroin/bone marrow stromal cells were slightly lower than the autograft, but without any significant difference ( p > 0.05). In addition, the mineralized silk fibroin was significantly greater in most parameters than the silk fibroin/bone marrow stromal cells ( p < 0.05). Conclusion The mineralized silk fibroin resembles natural bone structurally, and the cellular and mineral layers of silk fibroin are both critical to bone regeneration. The ability to promote spinal fusion is enhanced when the mineralized silk fibroin is seeded with bone marrow stromal cells.
Subject
Biomedical Engineering,Biomaterials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献