Biomechanical changes of freezer-storaged and decellularized pig tracheal scaffoldings

Author:

Wang Jinping12ORCID,Zhang Haixiang3,Feng Yangmeng3,Sun Yang4,Ma Ruina5,Cui Pengcheng1

Affiliation:

1. Department of Otolaryngology, the Second Affiliated Hospital, Air Force Medical University, Xi’an, China

2. Department of Otolaryngology, Shaanxi Provincial People’s Hospital, Xi’an, China

3. Central Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China

4. Data Center, Shaanxi Provincial People’s Hospital, Xi’an, China

5. Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Air Force Medical University, Xi’an, China

Abstract

Background As an excellent xenotransplant, the pig trachea can be decellularized and cryopreserved to reduce its immunogenicity. However, few reports are found on the changes of its mechanical properties after cryopreservation and decellularization. Objective To evaluate the structure and biomechanical properties in pig tracheal scaffolds resulting from decellularized and cryopreserved. Material and methods Twenty-five pig tracheal segments were separated into five groups: untreated (group A), only decellularized (group B), only cryopreserved (group C), decellularized after cryopreserved (group D) and cryopreserved after decellularized (group E). Tracheal segments were subjected to uniaxial tension or compression using a universal testing machine to determine structural biomechanical changes. Results It showed that there was no statistically significant difference in the tensile strength of the trachea in each group. The compressive strength of group B, C and D were same as the group A ( P > 0.05), while the group E was lower than that of the group A ( P < 0.05). Conclusions and significance: The histological examination of the decellularization after cryopreservation shows that the removal of epithelial cells and submucosal cells is more thorough, and the biomechanical structure of the trachea is better preserved. This proved to be a new method to prepare xenotransplantation of trachea graft.

Funder

Key Research and Development Project of Shaanxi Province of China

Technology Innovation and Development Fund of Tangdu Hospital

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3