Controlled pore anisotropy in chitosan-gelatin cryogels for use in bone tissue engineering

Author:

Andres Madeline1ORCID,Robertson Eileen1,Hall Andrew1,McBride-Gagyi Sarah23,Sell Scott1

Affiliation:

1. Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO, USA

2. Department of Orthopaedic Surgery, Saint Louis University School of Medicine, Saint Louis, MO, USA

3. Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA

Abstract

In tissue engineering, the development of an appropriate scaffold is crucial to provide a framework for new tissue growth. The use of cryogels as scaffolds shows promise due to their macroporous structure, but the pore size, distribution, and interconnectivity is highly variable depending on the fabrication process. The objective of the current research is to provide a technique for controlled anisotropy in chitosan-gelatin cryogels to develop scaffolds for bone tissue engineering application. A mold was developed using additive manufacturing to be used during the freezing process in order to fabricate cryogels with a more interconnected pore structure. The scaffolds were tested to evaluate their porosity, mechanical strength, and to observe cell infiltration through the cryogel. It was found that the use of the mold allowed for the creation of designated pores within the cryogel structure which facilitated cell infiltration to the center of the scaffold without sacrificing mechanical integrity of the structure.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3