In Vivo and in Vitro Stability of Modified Poly(Urethaneurea) Blood Sacs

Author:

Liu Q.1,Runt J.2,Felder G.3,Rosenberg G.3,Snyder A. J.3,Weiss W. J.3,Lewis J.4,Werley T.4

Affiliation:

1. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802

2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802,

3. Department of Surgery, College of Medicine, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033

4. Arrow International, P.O. Box 6306, Reading, PA 19610

Abstract

In the present study, we investigate the in vivo and in vitro stability of modified poly(urethaneurea) (BioSpan MS/0.4) blood sacs. Blood sacs were utilized primarily in left ventricular assist devices that were implanted in calves for times ranging from 5 to 160 days. Cyclic testing in vitro was also conducted on similar sacs. Various analytical methods were employed to characterize the sacs after in vivo or in vitro service and corresponding retained "control" sacs. These methods included ATR-FTIR spectroscopy, scanning electron microscopy and gel permeation chromatography. In general, the characteristics of implanted and in vitro cycled sacs were similar to their control sacs. Thermal and microtensile properties were unchanged after testing. The same was true for the ATR-FTIR spectra, indicating relative chemical stability for the time frames explored here. The only significant changes occurred in molecular weight and gross surface morphology. A modest increase in weight average molecular weight was observed for most implanted blood sacs, indicating some type of chain extension or branching reaction in vivo. Although the surface morphologies of implanted blood sacs were often similar to their control sacs, we sometimes observed limited pitting on the nonblood contacting surfaces in regions of the sac that experience maximum bending during service.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3