Polyaspartic acid, 2-acrylamido-2-Methyl propane sulfonic acid and sodium alginate based biocompatible stimuli responsive polymer gel for controlled release of GHK-Cu peptide for wound healing

Author:

Sharma Shilpa1,Anwar Mohammad Faiyaz2,Dinda Amit kumar3,Singhal Maneesh3,Dua Amita4,Malik Amita4ORCID

Affiliation:

1. Department of Chemistry, Manav Rachna University, Faridabad, India

2. Department of Pathology, All India Institute of Medical Sciences, New Delhi, India

3. Department of Plastic Reconstructive and Surgery, All India Institute of Medical Sciences, New Delhi, India

4. Department of Chemistry, Dyal Singh College, New Delhi, India

Abstract

Stimuli responsive polymer based on Polyaspartic acid, 2-Acrylamido-2-methylpropane sulfonic acid and sodium alginate (NaAlg) were synthesized using two cross-linkers Ethylene glycol dimethacrylate (EGDMA) and TMPTA (Trimethylolpropane triacrylate). The polymers were standardized and optimized to obtain a polymer with maximum swelling in distilled water, saline, glucose and solutions of varying pH. The synthesized polymer swelled well in distilled water, glucose solution and acidic- alkaline medium. The biocompatibility of the polymer was evaluated for blood compatibility and protein adsorption. The polymer with maximum swelling property was used for peptide release studies. The polymer was further used to study the peptide encapsulation and release efficiency of the polymeric material which was confirmed by FTIR, Scanning Emission Microscope and EDX. The encapsulation efficiency of the polymer for encapsulating (glycyl-l-histidyl-l-lysine-copper) GHK-Cu was observed to be 55.26% and peptide release of 51.84% was observed for Ethylene glycol dimethacrylate based polymer after 24 h whereas for Trimethylolpropane triacrylate based polymer the encapsulation efficiency was observed to be 49.6% and release was 39.01%. The EGDMA based polymer was further examined under in vivo studies in order to evaluate the efficiency of the synthesized polymer. The in vivo studies include wound closure, histopathological analysis, biochemical and toxicity assay. The material has shown promising results for both in vivo and in vitro studies.

Funder

University of Grant Commission

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3