Application of cell laden hydrogels with temporally tunable stiffness in biomedical research

Author:

AhmadianKia Naghmeh1ORCID,Goli-Malekabadi Zahra23,Pournaghmeh Shayan4

Affiliation:

1. Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran

2. Bioengineering Center for Cancer, Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

3. Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

4. Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran

Abstract

Extracellular matrix (ECM) is a dynamic and complex environment regulating the cell fate and behavior. It is characterized by biophysical and biochemical properties specific for each tissue. Interestingly, hydrogels can serve as exceptional artificial cellular microenvironments as they can be designed to mimic the key features of the native ECM. They are valuable tools to understand how cells respond to complex microenvironments in normal and pathologic conditions. However, unlike the highly dynamic structure of ECM, nearly all of the conventional hydrogel platforms are primarily static and lack the dynamic properties of native extracellular matrices. Thus, it is necessary to develop dynamic hydrogels to better understand the mechanisms by which dynamic changes of ECM contribute to biological processes. Stiffness is one of the significant dynamic components of ECM which must be appropriately mimicked over time in vitro. In this review, we cover recent advances in engineering strategies to make cell laden hydrogels with temporally tunable stiffness. We also highlight the applications of these hydrogel systems in biomedicine focusing on specific examples in cancer, cardiovascular system, tissue fibrosis and stem cell research. Finally, the challenges regarding the development and application of cell laden hydrogels with temporally tunable stiffness are proposed.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3