Optimization of extracellular matrix extraction from human perirenal adipose tissue

Author:

Chun So Young1,Lee Jun Nyung2,Ha Yun-Sok2,Yoon Bo Hyun1,Lee Eun Hye1ORCID,Kim Bo Mi1,Gil Haejung1,Han Man-Hoon3,Oh Woo Seok2,Kwon Tae Gyun2,Kim Tae-Hwan2,Kim Bum Soo4

Affiliation:

1. BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea

2. Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea

3. Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea

4. Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea

Abstract

Human adipose tissue includes useful substrates for regenerative medicine such as the extracellular matrix (ECM), but most perirenal fat tissue is wasted after kidney surgery. Since a lot of adipose tissue can be procured after a kidney, we extracted ECM from human perirenal adipose tissue and optimized the extraction process. To verify the efficacy for ECM extraction, we compared the products in several steps. Perirenal adipose tissue was either finely homogenized or underwent crude manual dissection. The amount of extracted ECM was quantified with ELISA for verification of the initial tissue downsizing effect. To validate the drying effect for fast and complete delipidation, tissues were prepared in a dry or wet phase, and residual lipids were visualized with Oil-Red-O staining. The extracted lipid was assayed at each time point to quantify the appropriate delipidation time. To select the optimal decellularization method, tissues were treated with physical, chemical, or enzymatic method, and the residual cell debris were identified with histological staining. The biochemical properties of the ECM extracted by the above methods were analyzed. The ECM extracted by fine homogenization showed a significantly enhanced amount of collagen, laminin and fibronectin compared to the crude dissection method. The dried tissue showed fast and complete lipid elimination compared to the wet tissue. Complete delipidation was achieved at 45 min after acetone treatment. Additionally, 1% triton X-100 chemical treatment showed complete decellularization with well-preserved collagen fibers. Biochemical analysis revealed preserved ECM proteins, a high cell proliferation rate and normal cell morphology without cell debris or lipids. The established process of homogenization, drying, delipidation with acetone, and decellularization with Triton X-100 treatment can be an optimal method for ECM extraction from human perirenal adipose tissue. Using this technique, human perirenal adipose tissue may be a valuable source for tissue engineering and regenerative medicine.

Funder

Korean government

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3