Affiliation:
1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, People's Republic of China
Abstract
Targeted drug delivery is urgently needed for cancer therapy, and green synthesis is important for the biomedical use of drug delivery systems in the human body. In this work, we report two targeted delivery systems for anticancer drugs based on tea polyphenol functionalized and reduced graphene oxide (TPGs). The obtained TPGs demonstrated an efficient doxorubicin loading capacity as high as 3.430 × 106 mg g−1 and 3.932 × 104 mg g−1, and exhibited pH-triggered release. Furthermore, the kinetic models, adsorption isotherms, and possible loading mechanisms were investigated in details. Compared to TPG1 and free doxorubicin, TPG2 is biocompatible to normal cells even at high concentrations and promotes tumor cells death by delivering the doxorubicin mainly to the nuclei. These results were confirmed using cell viability tests and confocal laser microscopy. Moreover, apoptosis tests showed that the mechanism of cancer cell death induced by TPG1 and TPG2 might follow the similar mechanisms. Taken together, these results demonstrate that TPGs provide a multifunctional drug delivery system with a greater loading capacity and pH-sensitive drug release for enhanced cancer therapy. The high drug payload capability and enhanced antitumor efficacy demonstrate that we developed systems are promising for various biomedical applications and cancer therapy.
Subject
Biomedical Engineering,Biomaterials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献