Evolution of silicate bioglass particles as porous microspheres with a view towards orthobiologics

Author:

Islam Md Towhidul123ORCID,Nuzulia Nur Aisyah4,Macri-Pellizzeri Laura5,Nigar Farah36,Sari Yessie W.4,Ahmed Ifty1

Affiliation:

1. Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK

2. Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh

3. School of Physical Sciences, University of Kent, Canterbury, UK

4. Department of Physics, Faculty of Mathmatics and Natural Sciences, Bogor Agricultural University Kampus IPB Darmaga, Darmaga-Bogor, Indonesia

5. Wolfson STEM Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK

6. Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Bangladesh

Abstract

Although FDA approved and clinically utilised, research on 45S5 Bioglass® and S53P4 including other bioactive glasses continues in order to advance their applicability for a range of alternate applications. For example, rendering these particles porous would enable incorporation of varying biological payloads (i.e. cells, drugs and growth factors) and making them spherical would enhance their flow properties enabling delivery to target sites via minimally invasive injection procedures. This paper reports on the manufacture of solid (non-porous; SGMS) and highly porous microspheres (PGMS) with large external pores and fully interconnected porosity from bioactive silicate glass formulations (45S5 and S53P4) via a single stage flame spheroidisation process and their physicochemical properties including in vitro biological response. Morphological and physical characterisation of the SGMS and PGMS revealed interconnected porosity up to 65 ± 5%. Mass loss studies comparing between SGMS and PGMS revealed 1.5 times higher mass loss for the PGMS over 28 days. Also, in vitro bioactivity studies using simulated body fluid (SBF) revealed hydroxyapatite (HA) formation at earlier time point for PGMS compared to their SGMS counterparts (i.e day 1 for PGMS and day 3 for SGMS of 45S5). In addition, HA layers were also formed in cell culture media, with the exception of SGMS of 45S5, which revealed CaP formation with a ratio of 1.52–1.78. Direct cell seeding and indirect cell culture studies (via incubation with microsphere degradation products) revealed mouse 3T3 cells were able to grow and undergo osteogenic differentiation in vitro, confirming cytocompatibility of both 45S5 and S53P4 SGMS and PGMS. More importantly and especially for orthobiologic applications, cells were observed to have migrated within the pores of the PGMS. As such, the PGMS developed from these bioactive silicate glasses are highly promising candidate materials for orthobiologics and alternate applications requiring delivery of biologic payloads.

Funder

Engineering and Physical Sciences Research Council

British Council Newton Fund Institutional Links Grants

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3