A new magnetic nanocapsule containing 5-fluorouracil: In vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model

Author:

Shakeri-Zadeh Ali1,Shiran Mohammad-Bagher1,Khoee Sepideh2,Sharifi Ali Mohammad34,Ghaznavi Habib34,Khoei Samideh13

Affiliation:

1. Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2. Polymer Chemistry Department, School of Sciences, University of Tehran, Tehran, Iran

3. Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran

4. Pharmacology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

The purpose of this study was to create an optimized method for preparation of 5-fluorouracil-loaded magnetic poly lactic- co-glycolic acid nanocapsules and to investigate its potential as multifunctional carriers to deliver therapeutic agents for tumor-targeted therapies. The in vitro release of the newly synthesized 5-fluorouracil-loaded poly lactic- co-glycolic acid magnetic nanocapsules was investigated in phosphate-buffered saline medium using the dialysis method. In vivo release studies of the magnetic nanocapsules were performed in rabbits. Finally, the targeting properties, anti-tumor, and pro-apoptotic effects of this new magnetic nanocapsule on CT26 cells allograft model were studied. The effective diameter of nanocapsules was 67.2 nm. In vivo release investigations showed that 5-fluorouracil has a sustained release profile, prolonged lifetime in the rabbit plasma, and increased tissue appetency when loaded into the magnetic nanocapsule. Magnetic resonance imaging confirmed that the magnetic nanocapsules were successfully targeted to the tumor. Additionally, the anti-tumor studies revealed that the targeted therapy with magnetic nanocapsules containing 5-fluorouracil effectively inhibits the growth of tumors compared with 5-fluorouracil alone (P < 0.01). The present study demonstrates that this new magnetic nanocapsule can be considered a new nanotechnology-based cancer chemotherapy agent in vivo.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3