Osteoinduction of stem cells by collagen peptide-immobilized hydrolyzed poly(butylene succinate)/β-tricalcium phosphate scaffold for bone tissue engineering

Author:

Patntirapong Somying1,Janvikul Wanida2,Theerathanagorn Tharinee2,Singhatanadgit Weerachai1

Affiliation:

1. Thammasat University, Pathumthani, Thailand

2. National Metal and Materials Technology Center, Pathumthani, Thailand

Abstract

Bone substitute is a therapeutic approach to treat bone abnormalities. A scaffold serves mainly as osteoconductive elements. To facilitate a better biological performance, short collagen peptide was immobilized onto hydrolyzed poly(butylene succinate)/β-tricalcium phosphate (HPBSu/TCP) scaffolds. PBSu/TCP (80:20) scaffolds were fabricated by a supercritical CO2 technique, hydrolyzed with 0.6 M NaOH and conjugated with short collagen peptide tagged with or without red fluorescence. The surface morphology and porous structure of scaffolds were characterized by scanning electron microscopy and micro-computed tomography. Human mesenchymal stem cells were cultured onto the scaffolds and examined for osteogenic differentiation and biomineralization in vitro by means of alkaline phosphatase activity, alizarin red staining, and reverse transcription-polymerase chain reaction. The PBSu/TCP and HPBSu/TCP scaffolds were successfully prepared. Scanning electron microscopy and micro-computed tomography results showed that the porosity was distributed throughout the scaffolds with the pore sizes in the range of 250–900 µm. Fluorescence microscopy demonstrated retention of tagged short collagen peptide on the scaffold. Mesenchymal stem cells adhered and grew well on the material. Under osteogenic induction, cells cultured on the short collagen peptide -immobilized scaffold significantly produced a greater amount of alkaline phosphatase activity and positive mineralization than those cultured on the control scaffold. The present results have shown that the short collagen peptide-immobilized HPBSu/TCP scaffold enhanced osteoinduction and biomineralization of stem cell-derived osteoblasts, possibly via stimulation of alkaline phosphatase activity. This suggests the potential use of osteogenic peptide-immobilized material in bone tissue engineering for correcting bone defects.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3