In vivo tissue response and antibacterial efficacy of minocycline delivery system based on polymethylmethacrylate bone cement

Author:

Silva Tiago1,Silva Jose C1,Colaco Bruno2,Gama Adelina2,Duarte-Araújo Margarida3,Fernandes Maria H14,Bettencourt Ana5,Gomes Pedro14

Affiliation:

1. Faculty of Dental Medicine, University of Porto, Porto, Portugal

2. University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

3. Instituto de Ciencias Biomedicas Abel Salazar, University of Porto, Porto, Portugal

4. REQUIMTE/LAQV – University of Porto, Porto, Portugal

5. Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal

Abstract

This study aims the in vivo biological characterization of an innovative minocycline delivery system, based on polymethylmethacrylate bone cement. Bone cements containing 1% or 2.5% (w/w) minocycline were formulated and evaluated through solid-state characterization. Biological evaluation was conducted in vivo, within a rat model, following the subcutaneous and bone tissue implantation, and tissue implantation associated with Staphylococcus aureus is challenging. The assessment of the tissue/biomaterial interaction was conducted by histologic, histomorphometric and microtomographic techniques. Minocycline addition to the composition of the polymethylmethacrylate bone cement did not modify significantly the cement properties. Drug release profile was marked by an initial burst release followed by a low-dosage sustained release. Following the subcutaneous tissue implantation, a reduced immune-inflammatory reaction was verified, with diminished cell recruitment and a thinner fibro-connective capsule formation. Minocycline-releasing cements were found to enhance the bone-to-implant contact and bone tissue formation, following the tibial implantation. Lastly, an effective antibacterial activity was mediated by the implanted cement following the tissue challenging with S. aureus. Kinetic minocycline release profile, attained with the developed polymethylmethacrylate system, modulated adequately the in vivo biological response, lessening the immune-inflammatory activation and enhancing bone tissue formation. Also, an effective in vivo antibacterial activity was established. These findings highlight the adequacy and putative application of the developed system for orthopedic applications.

Funder

FEDER/COMPETE/POCI– Operacional Competitiveness and Internacionalization Programme

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3