Dental Composites Based on Amorphous Calcium Phosphate — Resin Composition/Physicochemical Properties Study

Author:

Skrtic D.1,Antonucci J.M.2

Affiliation:

1. Paffenbarger Research Center American Dental Association Foundation National Institute of Standards and Technology Gaithersburg, MD 20899, USA,rago. skrtic@nist. gov

2. Polymers Division National Institute of Standards and Technology Gaithersburg, MD 20899, USA

Abstract

This study explores how the resin composition/structure affects the physicochemical properties of copolymers and their amorphous calcium phosphate (ACP)-filled composites. A series of photo-polymerizable binary and ternary matrices are formulated utilizing 2,2-bis[ p-(2'-hydroxy-3'methacryloxypropoxy)phenyl]propane, 2,2-bis[ p-(2'-methacryloxypropoxy)phenyl]-propane (EBPADMA), or a urethane dimethacrylate as base monomers, and triethylene glycol dimethacrylate or hexamethylene dimethacrylate (HmDMA) with or without 2-hydroxyethyl methacrylate (HEMA) as diluent monomer. Unfilled copolymers and composites filled with 40% by mass zirconia-hybridized ACP are evaluated for biaxial flexure strength (BFS), degree of conversion (DC), mineral ion release, polymerization shrinkage (PS), and water sorption (WS). The average DC values are 82—94% and 74—91% for copolymers and composites, respectively. Unrelated to the resin composition, the PS values of composites are up to 8.4 vol. % and the BFS values of wet composite specimens are on average 51 ± 8 MPa. The maximum WS values attained in copolymers and composites reach 4.8 mass%. Inclusion of hydrophobic HmDMA monomer in the matrices significantly reduces the WS. The levels of Ca and PO4 released from all types of composites are significantly above the minimum necessary for the re-deposition of apatite to occur. Elevated Ca, and to a lesser extent PO4 release, is observed in HEMA-containing, ternary EBPADMA formulations. Further resin reformulations may be needed to improve the PS of composite specimens. Poor dispersion of `as-synthesized' ACP within the composite contributes to their inferior mechanical performance.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3