Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses

Author:

Kilcup Nancy1,Gaynard Seán2,Werner-Zwanziger Ulrike3,Tonkopi Elena45,Hayes Jessica2,Boyd Daniel146

Affiliation:

1. School of Biomedical Engineering, Dalhousie University, Halifax, Canada

2. Regenerative Medicine Institute, Bioscience Research Building, National University of Ireland Galway, Galway, Ireland

3. Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax, Canada

4. Department of Diagnostic Imaging and Interventional Radiology, QEII Health Sciences Centre, Victoria General Hospital, Victoria Building, Halifax, Canada

5. Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada

6. Department of Applied Oral Sciences, Dentistry Building, Dalhousie University, Halifax, Canada

Abstract

A host of research opportunities with innumerable clinical applications are open to biomedical glasses if one considers their potential as therapeutic inorganic ion delivery systems. Generally, applications have been limited to repair and regeneration of hard tissues while compositions are largely constrained to the original bioactive glass developed in the 1960s. However, in oncology applications the therapeutic paradigm shifts from repair to targeted destruction. With this in mind, the composition–structure–property–function relationships of vanadium-containing zinc-silicate glasses (0.51SiO2–0.29Na2O–(0.20- X)ZnO– XV2O5, 0 ≤  X ≤ 0.09) were characterized in order to determine their potential as therapeutic inorganic ion delivery systems. Increased V2O5 mole fraction resulted in a linear decrease in density and glass transition temperature (Tg). 29Si MAS NMR peak maxima shifted upfield while 51V MAS NMR peak maxima were independent of V2O5 content and overlapped well with the spectra NaVO3. Increased V2O5 mole fraction caused ion release to increase. When human liver cancer cells, HepG2, were exposed to these ions they demonstrated a concentration-dependent cytotoxic response, mediated by apoptosis. This work demonstrates that the zinc-silicate system studied herein is capable of delivering therapeutic inorganic ions at concentrations that induce apoptotic cell death and provide a simple means to control therapeutic inorganic ion delivery.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3