Computational analysis of electrical stimulation to promote tissue healing for hernia repair at varying mesh placement planes

Author:

Mosier Savannah1,Berbel German2,Friis Elizabeth A13ORCID

Affiliation:

1. Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA

2. Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA

3. Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA

Abstract

Development of a tear in the abdominal wall allowing for protrusion of intra-abdominal contents is known as a hernia. This can cause pain, discomfort, and may need surgical repair. Hernias can affect people of any age or demographic. In the USA, over 1 million hernia repair procedures are performed each year. During these surgeries, it is common for a mesh to be utilized to strengthen the repair. Different techniques allow for the mesh to be placed in different anatomical planes depending on hernia location and approach. The locations are onlay, inlay, and sublay, with sublay being split into retromuscular or preperitoneal with sublay being the most commonly used. The use of an electrically active hernia repair mesh is of interest to model as electrical stimulation has been shown to improve soft tissue healing which could reduce recurrence rates. Theoretical 3D COMSOL models were built to evaluate the varying electric fields of an electrically active hernia repair mesh at each of the different anatomical planes. Three voltages were chosen (10, 20, and 30 mV) for the study to simulate a low-level electrical signal and the electric field from a piezoelectric material at the tissue layers surrounding the mesh construct. Based on the model outputs, the optimal mesh placement location was the sublay-retromuscular as this location had the highest electric field values in the connective tissues and rectus abdominis muscle, which are the primary tissues of concern for the healing process and a successful repair.

Funder

National Institute of General Medical Sciences

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3