A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect

Author:

Chen Shangsi1ORCID,Wang Yue2,Ma Jun1ORCID

Affiliation:

1. Biomedical Engineering, Huazhong Univesity of Science and Technology, Wuhan, China

2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China

Abstract

Bone-like apatite coating fabricated by biomineralization process is a facile way for surface modification of porous scaffolds to improve interfacial behaviors and thus facilitate cell attachment, proliferation, and differentiation for bone tissue engineering. In this study, a Sr-containing calcium phosphate solution was made and used to construct a thick layer of Sr-doped bone-like apatite on the surface of 3D printed scaffolds via biomineralization process. Importantly, Sr-doped bone-like apatite could form and fully cover the 3D printed scaffolds surface in hours. The characterization results indicated that Sr2+ ions successfully replaced Ca2+ ions in bone-like apatite and the molar ratio of Sr/(Ca+Sr) was up to 8.2%. Furthermore, the Sr-doped apatite coating increased the compressive strength and Young’s modulus of composite scaffolds. The compatibility and bioactivity of mineralized scaffolds were evaluated by cell attachment, proliferation, and differentiation of MC3T3-E1 cells. It was found that Sr-doped apatite coating could gradually release Sr2+ ions and further promote cell attachment, proliferation rate, and the expression of alkaline phosphatase activity and osteogenic related genes, such as collagen type I (Col I), Runt-related transcription factor 2 (Runx-2), osteopontin, and osterix. Therefore, the Sr-doped apatite coating fabricated by this facile and rapid biomineralization process offers a new strategy to modify 3D printed porous scaffolds with significantly improved mechanical and biological properties for bone tissue engineering applications.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3