Effects of CO2 Laser Irradiation on the Surface Properties of Magnesia-Partially Stabilised Zirconia (MgO-PSZ) Bioceramic and the Subsequent Improvements in Human Osteoblast Cell Adhesion

Author:

Hao L.1,Lawrence J.2,Chian K. S.2

Affiliation:

1. Manufacturing Engineering Division, School of Mechanical & Production Engineering, Nanyang Technological University (NTU), Nanyang Avenue, Singapore 639798,

2. Manufacturing Engineering Division, School of Mechanical & Production Engineering, Nanyang Technological University (NTU), Nanyang Avenue, Singapore 639798

Abstract

In order to acquire the surface properties favouring osseo-integration at the implant and bone interface, human foetal osteoblast cells (hFOB) were used in an in vitro test to examine changes in cell adhesion on a magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic after CO2 laser treatment. The surface roughness, microstructure, crystal size and surface energy of untreated and CO2 laser-treated MgO-PSZ were fully characterised. The in vitro cell evaluation revealed a more favourable cell response on the CO2 laser-treated MgO-PSZ than on the untreated sample. After 24-h cell incubation, no cell was observed on the MgO-PSZ, whereas a few cells attached on the CO2 laser-treatedMgO-PSZandshowedwellspreadandgood attachment. Moreover, the cell coverage density indicating cell proliferation generally increases with CO2 laser power densities applied in the experiments. The enhancement of the surface energy of the MgO-PSZ, especially its polar component caused by the CO2 laser treatment, was found to play a significant role in the initial cell attaching, thus enhancing the cell growth. Moreover, the change in topography induced by the CO2 laser treatment was identified as one of the factors influencing the hFOB cell response.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3