Influence of low modulus Co-Zr alloys surface modification on protein adsorption and MC3T3-E1, NIH3T3 and RAW264.7 cell behaviour

Author:

Krishnadath Dewi Chrystal1ORCID,Ruan Wei2,Yang Hailin3ORCID,Liu Jue4,Zhou Xiongwen1

Affiliation:

1. Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, PR China

2. Department of Anesthesiology, Anesthesia Research Institute, The Second Xiangya Hospital, Central South University, Changsha, PR China

3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China

4. Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, PR China

Abstract

Three types of Co-xZr (x = 5, 7.5, and 10 wt.%) were treated with hydroxyapatite (HA) and used as an object to investigate the effect of HA coating on the surface and biocompatibility of Co-xZr alloys. And the protein adsorption and the subsequent biological behaviour of osteoblast, fibroblast and macrophages were also investigated. The surface microstructure and wettability were assessed by scanning electron microscopy (SEM) and static angle profilometer. To evaluate the biocompatibility of Co-xZr and Co-xZr-HA, we quantified plasma proteins adsorption by bicinchoninic acid assay (BCA), cytotoxicity and cell proliferation by cell counting kit-8 (CCK-8) and scanning electron microscopy (SEM). The results indicated that Co-xZr-HA alloy surfaces were more hydrophilic and had higher affinity to plasma proteins. Higher protein concentrations were found adsorbed onto Co-7.5Zr-HA and Co-10Zr-HA alloys. Cytotoxicity analysis indicated that HA coating improved the biocompatibility of Co-xZr alloys. Furthermore, the comparable results of co-incubation of Co-xZr-HA alloys with cells reveal cellular attachments to HA surfaces. HA was successfully formed on Co-xZr alloys and modified the surface structure and biocompatibility of the alloys. Co-10Zr-HA and Co-7.5Zr-HA had the most favourable properties and cytocompatibility, and therefore can be potentially used for dental implants.

Funder

The National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3