Modeling of Carbon Monoxide Two-Photon Laser-Induced Fluorescence (LIF) Spectra at High Temperature and Pressure

Author:

Carrivain Olivier1ORCID,Orain Mikael2ORCID,Dorval Nelly1,Morin Céline3,Legros Guillaume4

Affiliation:

1. ONERA-DPHY, ONERA, Université Paris-Saclay, Palaiseau, France

2. ONERA-DMPE, ONERA, Université de Toulouse, Toulouse, France

3. Université Polytechnique Hauts-de-France, CNRS, UMR 8201 – LAMIH, Valenciennes, France

4. Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7190, Institut Jean Le Rond d'Alembert, Paris, France

Abstract

In this study, quantitative model of two-photon excitation and fluorescence spectra of carbon monoxide based on up-to-date spectroscopic constants collected during an extensive literature survey was developed. This semi-classical model takes into account Hönl–London factors, quenching effects (collisional broadening and shift), ionization and stark effect (broadening and shift), whereas predissociation is neglected. It was specifically developed to first reproduce with a high confidence level the behavior of our experimental spectra obtained from laser-induced fluorescence (LIF) measurements, and then to allow us to extrapolate the fluorescence signal amplitude in other conditions than those used in these experiments. Synthetic two-photon excitation and fluorescence spectra of CO were calculated to predict the fluorescence signal at high pressures and temperatures, which are representative of gas turbine operating conditions. Comparison between experimental and calculated spectra is presented. Influence of temperature on both excitation and fluorescence spectra shapes and amplitudes is well reproduced by the simulated ones. It is then possible to estimate flame temperature from the comparison between experimental and calculated shapes of numerical excitation spectra. Influence of pressure on both excitation and fluorescence spectra was also investigated. Results show that for temperature below 600 K and pressure above 0.1 MPa, the usual Voigt profile is not suitable to reproduce the shape of the excitation spectrum. We found that the Lindholm profile is well suited to reproduce the pressure-dependence of the spectrum in the range 0.1 to 0.5 MPa at 300 K, and 0.1 to 0.7 MPa at 860 K. Beyond 0.7 MPa, in this temperature range, it is shown that the Lindholm profile does no longer match the spectral profiles, in particularly the red wing. Further analyses taking into account the line mixing phenomenon at higher pressure are thus discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3