Affiliation:
1. Key Laboratory of Precision Opto-Mechatronics Technology Sponsored by Ministry of Education, School of Instrumentation and Opto-Electronics Engineering, Beihang University, Beijing, China
Abstract
Temporally and spatially modulated Fourier transform imaging spectrometers (TSMFTISs) can obtain images and interference information of targets during the data acquisition process for remote sensing. Temporally and spatially modulated Fourier transform imaging spectrometers play an important role in target classification and identification, as the spectrum information of targets can be reconstructed with the theory of Fourier transform spectroscopy. However, the defect pixels absent in the planar array charge-coupled device used in imaging spectrometers have a significant impact on the accuracy of target spectral recovery information, so the preprocessing of bad pixels in remote sensing interference images is indispensable to data processing in TSMFTIS. An adaptive defect pixel correction method based on the weighted least squares support vector machine is introduced in this paper. The principle of TSMFTIS is presented to state the specialty of bad pixels and discuss the limitations of the traditional defect pixel method. Simulations based on the conventional method and the proposed method are performed to obtain bad pixel correction results for TSMFTIS. The algorithm presented in this paper is more efficient and robust. An application of the proposed method is employed.
Funder
National Natural Science Foundation of China
natural science foundation of beijing municipality
Fundamental Research Funds for the Central Universities
Subject
Spectroscopy,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献