Strained Silicon Technology: Non-Destructive High-Lateral-Resolution Characterization Through Tip-Enhanced Raman Spectroscopy

Author:

La Penna Giancarlo1ORCID,Mancini Chiara1,Proietti Anacleto1,Buccini Luca1,Passeri Daniele12,Gambacorti Narciso3ORCID,Richy Jérôme3ORCID,Rossi Marco12

Affiliation:

1. Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy

2. Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy

3. Univ Grenoble Alpes, CEA, Leti, Grenoble, France

Abstract

The semiconductor industry is undergoing a transformative phase, marked by the relentless drive for miniaturization and a constant demand for higher performance and energy efficiency. However, the reduction of metal–oxide–semiconductor field-effect transistor sizes for advanced technology nodes below 10 nm presents several challenges. In response, strained silicon technology has emerged as a key player, exploiting strain induction in the silicon crystal lattice to improve device performance. At the same time, there has been a growing need for characterization techniques that allow in-line monitoring of sample conditions during semiconductor manufacturing, as an alternative to traditional methods such as transmission electron microscopy or high-resolution X-ray diffraction, which have several limitations in terms of measurement time and sample destructiveness. This paper explores the application of advanced spectroscopic characterization techniques, in particular µ-Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS), to meet the evolving needs of the semiconductor industry for quality control and failure analysis, increasingly requiring faster and non-destructive characterization techniques. µ-Raman provides insight into strain values and distributions of strained layers with different thicknesses and germanium concentrations, but its lateral resolution is constrained by the Abbe diffraction limit. TERS, on the other hand, emerges as a powerful non-destructive technique capable of overcoming diffraction limits by exploiting the combination of an atomic force microscope with a Raman spectrometer. This breakthrough makes it possible to estimate the chemical composition and induced strain in the lattice by evaluating the Raman peak position shifts in strained and unstrained silicon layers, providing crucial insights for nanoscale strain control. In particular, this paper focuses on the TERS characterization of Si0.7Ge0.3 epitaxial layers grown on a silicon-on-insulator device, demonstrating the effectiveness of this technique and the high lateral resolution that can be achieved.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3