Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible–Near-Infrared–Shortwave-Infrared Spectral Region

Author:

Francos Nicolas1ORCID,Notesco Gila1,Ben-Dor Eyal1

Affiliation:

1. Remote Sensing Laboratory, Geography Department, Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv, Israel

Abstract

Quartz is the most abundant mineral on the earth’s surface. It is spectrally active in the longwave infrared (LWIR) region with no significant spectral features in the optical domain, i.e., visible–near-infrared–shortwave-infrared (Vis–NIR–SWIR) region. Several space agencies are planning to mount optical image spectrometers in space, with one of their missions being to map raw materials. However, these sensors are active across the optical region, making the spectral identification of quartz mineral problematic. This study demonstrates that indirect relationships between the optical and LWIR regions (where quartz is spectrally dominant) can be used to assess quartz content spectrally using solely the optical region. To achieve this, we made use of the legacy Israeli soil spectral library, which characterizes arid and semiarid soils through comprehensive chemical and mineral analyses along with spectral measurements across the Vis–NIR–SWIR region (reflectance) and LWIR region (emissivity). Recently, a Soil Quartz Clay Mineral Index (SQCMI) was developed using mineral-related emissivity features to determine the content of quartz, relative to clay minerals, in the soil. The SQCMI was highly and significantly correlated with the Vis–NIR–SWIR spectral region (R2 = 0.82, root mean square error (RMSE) = 0.01, ratio of performance to deviation (RPD) = 2.34), whereas direct estimation of the quartz content using a gradient-boosting algorithm against the Vis–NIR–SWIR region provided poor results (R2 = 0.45, RMSE = 15.63, RPD = 1.32). Moreover, estimation of the SQCMI value was even more accurate when only the 2000–2450 nm spectral range (atmospheric window) was used (R2 = 0.9, RMSE = 0.005, RPD = 1.95). These results suggest that reflectance data across the 2000–2450 nm spectral region can be used to estimate quartz content, relative to clay minerals in the soil satisfactorily using hyperspectral remote sensing means.

Funder

Israel Ministry of National Infrastructure, Energy and Water Resources

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3