In-Line Chemical Composition Monitoring for the Injection Molding Process of Biodegradable Polymer Blends Using Simultaneous Measurement of Near-Infrared Diffuse Reflectance and Transmission Spectra

Author:

Yoshikawa Itsuki1ORCID,Hikima Yuta2ORCID,Ohshima Masahiro1

Affiliation:

1. Department of Chemical Engineering, Kyoto University, Kyoto, Japan

2. Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Hiroshima, Japan

Abstract

In the processing of polymer blends and composites, in-line near-infrared (NIR) spectroscopy enables monitoring of the composition and its composite uniformity and contributes to rapid process development and quality control. However, in the injection molding process, the study of the composition of polymer materials has been delayed due to high-pressure conditions. Our research group developed NIR probes for transmission and diffuse reflectance measurements that can withstand high-pressure and temperature conditions up to 130 MPa and 200 °C. In this research, transmission and diffuse reflectance spectra were measured inline during the injection molding process of polymer blends of poly(lactic acid) and polybutylene succinate adipate. The intensity of each polymer band in the second-derivative spectra exhibited a monotonic increase or decrease in response to changes in the blend ratio. Using transmission and diffuse reflectance spectra as explanatory variables of the partial least squares regression model simultaneously, the model showed high estimation accuracy for the entire region of the blend ratio. Finally, this model was applied to monitor the polymer changeover operation, and the change in the blend ratio in the molded product was successfully estimated in line.

Funder

the Kyoto University GAP Fund Program

JSPS SPRING

ISHIZUE 2021 of the Kyoto University Research Development Program

a Research Grant from the Die and Mold Technology Promotion Foundation

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3