Atomic and Molecular Species Post-2 μs Dynamics in Laser-Induced Carbon Plasmas in Air

Author:

Yousfi Houssyen12ORCID,Abdelli-Messaci Samira2,Ouamerali Ourida1,Dekhira Azeddine1

Affiliation:

1. Laboratory of Theoretical Computational Chemistry and Photonics, Faculty of Chemistry, University of Science and Technology Houari Boumediene (USTHB), BP 32 El-alia, Bab Ezzouar, Algiers 16111, Algeria

2. Center for Development of Advanced Technologies, Bab Hassen, Algiers, Algeria

Abstract

Laser-induced carbon plasma in air undergoes various physicochemical processes that affect the kinetic chemistry of species of the plasma plume. We report the time- and space-resolved characterization of carbon plasma produced by infrared nanosecond laser into air at atmospheric pressure. Investigating the laser fluence effect highlights dissociation for fluences >40 J cm−2, and recombination processes in the fluence range of 10–40 J cm−2. Emission intensities of C2 and CN molecules undergo an enhancement at specific spatiotemporal locations in the laser-induced plasma. At a value of 27 J/cm2 and 0.8 mm from the plasma ignition, molecular band formation is favored for the specific temperature and density values of 1.7 × 1015 cm−3 and 9502 K. The vibrational temperatures of molecules are determined using nonlinear spectral data fitting program. The shock front between laser-induced carbon plasma and air may lead to a significant shock wave that affects the occurrence of molecular CN and C2 formation. This can be explained by the distinct temperatures exhibited by CN and C2 molecules with laser fluence. The atomic carbon travels farther to react and form C2, where the ionization–recombination process plays a significant role in its formation. Collisions of C with N neutrals and N2 molecules are the plausible origin of CN generation. Moreover, the density of CN in the plasma depends on C2 molecules.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3