Affiliation:
1. Environmental Research Group, School of Public Health, Imperial College London, London UK
2. MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
3. NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, London UK
Abstract
Microplastic pollution is a global issue for the environment and human health. The potential for human exposure to microplastic through drinking water, dust, food, and air raises concern, since experimental in vitro and in vivo toxicology studies suggest there is a level of hazard associated with high microplastic concentrations. However, to infer the likelihood of hazards manifesting in the human population, a robust understanding of exposure concentrations is needed. Infrared and near-infrared microspectroscopies have routinely been used to analyze microplastic in different exposure matrices (air, dust, food, and water), with technological advances coupling multivariate and machine learning algorithms to spectral data. This focal point article will highlight the application of infrared and Raman modes of spectroscopy to detect, characterize, and quantify microplastic particles, with a focus on human exposure to microplastic. Methodologies and state-of-the-art approaches will be reported and potential confounding variables and challenges in microplastic analysis discussed. The article provides an up-to-date review of the literature on microplastic exposure measurement using (near) infrared spectroscopies as an analytical tool, highlighting the recent advances in this rapidly advancing field.
Funder
AXA Research Fund
Natural Environment Research Council
National Institute for Health Research Health Protection Research Unit
Subject
Spectroscopy,Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献