Mid-Infrared Scattering in γ-Al2O3 Catalytic Powders

Author:

Blaisdell-Pijuan Paris1ORCID,Chen Zhe2,Zhang Yiteng2,Sundaresan Sankaran2,Koel Bruce2ORCID,Gmachl Claire1

Affiliation:

1. Department of Electrical Engineering, Princeton University, Engineering Quadrangle, Princeton, NJ, USA

2. Department of Chemical and Biological Engineering, Princeton University, Engineering Quadrangle, Princeton, NJ, USA

Abstract

The energy efficiency of heterogeneous catalytic processes may be improved by using mid-infrared light to excite gas-phase reactants during the reaction, since vibrational excitation of molecules has been shown to increase their reactivity at the gas-catalyst interface. A primary challenge for such light-enabled catalysis is the need to ensure close coupling between light-excited molecules and the catalyst throughout the reactor. Thus, it is imperative to understand how to couple infrared light efficiently to molecules near and inside catalytic material. Heterogenous catalysts are often nanoscale metal particles supported on high surface area, porous oxide materials and exhibit feature sizes across multiple scattering regimes with respect to the mid-infrared wavelength. These complex powders make a direct measurement of the scattering properties challenging. Here, we demonstrate that a combination of directional hemispherical measurements along with the in-line transmission measurement allow for a direct measurement of the scattered light signal. We implement this technique to study the scattering behavior of the catalytic support material γ-Al2O3 (with and without metal loading) between 1040 and 1220 cm−1. We first study how both the mean grain size affects the scattering behavior by comparing three different mean grain sizes spanning three orders of magnitude (2, 40, and 900 µm). Furthermore, we study how the addition of metal catalyst nanoparticles, Ru, or Cu, to the support material impacts the light scattering behavior of the powder. We find that the 40 µm grain size scatters the most (up to 97% at 1220 cm−1) and that the addition of metal nanoparticles narrows the scattering angle but does not decrease the scattering efficiency. The strong scattering of the 40 µm grains makes them the most ideal support material of those studied for the given spectrum because of their ability to distribute light within the reactor. Finally, we estimate that less than 100 mW of laser power is needed to cause significant excitation for testing mid-infrared catalysis in a Harrick Praying Mantis diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reactor, a magnitude easily available using commercial mid-infrared lasers. Our work also provides a mid-infrared foundation for a wide range of studies of light-enabled catalysis and can be extended to other wavelengths of light or to study the scattering behavior of other complex powders in other fields, including ceramics, biomaterials, and geology.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3