Coherent Anti-Stokes Raman Scattering Measurements of Time and Length Scales of Temperature Fluctuations in a Turbulent Flame

Author:

Kobtsev Vitaly D.1,Kozlov Dimitrii N.1ORCID,Kostritsa Sergey A.1,Orlov Sergey N.1,Smirnov Valery V.1,Volkov Sergey Y.1

Affiliation:

1. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

Abstract

The ability to derive temporal and spatial scales of “instantaneous” local temperature variations in a turbulent flame by means of coherent anti-Stokes Raman scattering (CARS) spectroscopy is demonstrated, for the first time to our knowledge. The measurements employed two CARS spectrometers with synchronized nanosecond pulse-repetitive lasers. The system was enabling to record, with a high temporal resolution of about 10 ns, series of single laser shot CARS spectra of N2 molecules from two spatially overlapped or displaced probe volumes as small as 0.03 × 0.03 × 2 mm3. The spectra were being recorded at a variable delay between two sequential shots, following each other in pairs at a repetition rate of 10 Hz. The series of 500 coupled measurements, at the delays in the range 1 μs–10 ms and the displacements up to 2.5 mm, have been performed in a few points of an open premixed methane–air flame of a laboratory burner with the time-averaged temperatures in the range 1200–1800 K. From the spectra, “instantaneous” temperatures, at the given delay and probe volume distance, have been derived. This allowed the auto-correlation coefficients of temperature fluctuations versus the delay and the displacement to be calculated. These dependences enabled to evaluate temperature correlation times and lengths under various mixture flow rates and equivalence ratios.

Funder

Russian Foundation for Basic Research

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3