Application of Energy Dispersive X-ray Fluorescence Spectrometry to the Determination of Copper, Manganese, Zinc, and Sulfur in Grass (Lolium perenne) in Grazed Agricultural Systems

Author:

Daly Karen1ORCID,Fenelon Anna1

Affiliation:

1. Environment, Soils and Land Use Department, Teagasc, Johnstown Castle Research Centre, Wexford, Ireland

Abstract

Conventional methods for the determination of major nutrients and trace elements in grass rely on acid digestion followed by analysis using inductively coupled plasma optical emission spectrometry (ICP-OES), which can be both time consuming and costly. Energy dispersive X-ray fluorescence (EDXRF) spectrometry offers a rapid alternative that can determine multiple elements in a single scan. Copper, Mn, Zn, and S in grass samples were determined using EDXRF with a number of different calibration approaches using both empirical standards and the theoretical relationships between concentrations and intensities. Using an existing archive of 467 grass samples of known concentrations, a suite of 30 samples was selected as empirical grass standards to build a calibration set between sample concentrations and EDXRF intensities. The theoretical or standardless approach used the fundamental parameters method to determine element concentrations. To validate the two calibration methods, 59 samples were randomly selected from the same archive and database and analyzed by EDXRF. The measurements of Cu, Mn, Zn, and S were compared with the ICP-OES values using agreement statistics. An excellent correlation was observed between the concentrations determined by EDXRF and ICP-OES ( R > 0.90) regardless of the calibration approach. However, agreement and closeness to the true value varied and were assessed using agreement statistics. Across all elements, the empirically calibrated samples were in excellent agreement with the values determined by ICP-OES. The theoretical calibrations provided excellent agreement for Mn and Zn, but a degree of fixed and proportional bias was observed in the Cu and S values. Fixed bias was corrected by subtracting the computed bias from the EDXRF concentrations and improved the overall agreement. Similarly, proportional bias was corrected using the linear regression model to predict the corrected EDXRF values. This improved the overall agreement with the ICP-OES values for both Cu and S using corrected fundamental parameters calibrations. This study provides a practical basis for the use of EDXRF to determine Cu, Mn, Zn, and S in grass samples to monitor forage quality in grazed systems without the need for sample digestion. The observed fixed and proportional bias in the theoretical calibrations can be corrected provided that a good correlation exists between EDXRF and conventional methods.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3