Pump–Probe Spectroscopy Using the Hadamard Transform

Author:

Beddard Godfrey S.1,Yorke Briony A.1

Affiliation:

1. School of Chemistry, University of Leeds, Leeds, UK

Abstract

A new method of performing pump–probe experiments is proposed and experimentally demonstrated by a proof of concept on the millisecond scale. The idea behind this method is to measure the total probe intensity arising from several time points as a group, instead of measuring each time separately. These measurements are multiplexes that are then transformed into the true signal via multiplication with a binary Hadamard S matrix. Each group of probe pulses is determined by using the pattern of a row of the Hadamard S matrix and the experiment is completed by rotating this pattern by one step for each sample excitation until the original pattern is again produced. Thus to measure n time points, n excitation events are needed and n probe patterns each taken from the n ×  n S matrix. The time resolution is determined by the shortest time between the probe pulses. In principle, this method could be used over all timescales, instead of the conventional pump–probe method which uses delay lines for picosecond and faster time resolution, or fast detectors and oscilloscopes on longer timescales. This new method is particularly suitable for situations where the probe intensity is weak and/or the detector is noisy. When the detector is noisy, there is in principle a signal to noise advantage over conventional pump–probe methods.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3