Laser-Induced Breakdown Spectroscopy and Principal Component Analysis for the Classification of Spectra from Gold-Bearing Ores

Author:

Diaz Daniel1ORCID,Molina Alejandro23,Hahn David W.12

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of Florida, Gainesville, FL, USA

2. College of Engineering, University of Arizona, Tucson, AZ, USA

3. Departamento de Procesos y Energía, Universidad Nacional de Colombia–Sede, Medellín, Colombia

Abstract

Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) were applied to the classification of LIBS spectra from gold ores prepared as pressed pellets from pulverized bulk samples. For each sample, 5000 single-shot LIBS spectra were obtained. Although the gold concentrations in the samples were as high as 7.7 µg/g, Au emission lines were not observed in most single-shot LIBS spectra, rendering the application of the usual ensemble-averaging approach for spectral processing to be infeasible. Instead, a PCA approach was utilized to analyze the collection of single-shot LIBS spectra. Two spectral ranges of 21 nm and 0.15 nm wide were considered, and LIBS variables (i.e., wavelengths) reduced to no more than three principal components. Single-shot spectra containing Au emission lines (positive spectra) were discriminated by PCA from those without the spectral feature (negative spectra) in a spectral range of less than 1 nm wide around the Au(I) 267.59 nm emission line. Assuming a discrete gold distribution at very low concentration, LIBS sampling of gold particles seemed unlikely; therefore, positive spectra were considered as data outliers. Detection of data outliers was possible using two PCA statistical parameters, i.e., sample residual and Mahalanobis distance. Results from such a classification were compared with a standard database created with positive spectra identified with a filtering algorithm that rejected spectra with an Au intensity below the smallest detectable analytical LIBS signal (i.e., below the LIBS limit of detection). The PCA approach successfully identified 100% of the data outliers when compared with the standard database. False identifications in the multivariate approach were attributed to variations in shot-to-shot intensity and the presence of interfering emission lines.

Funder

The World Bank through the McNamara Fellowship

Fundación para la Promoción de la Investigación y la Tecnología (FPIT) del Banco de la República de Colombia

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3